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ABSTRACT 

The Hardy Cross algorithm offers a reliable method of solving network systems of fluid flow and 
has become widely used for solving water and ventilation flow networks. A limitation is that computational 
iterations and time to solve a network rises rapidly with the size of the model and modern detailed 
ventilation networks have typically grown to thousands of airways. Non-linear matrix solving methods can 
offer improved performance, however these are more complex and may be unstable if initial estimates are 
poor. This paper presents improvements that can be applied to the traditional Hardy Cross algorithm to 
greatly reduce iterations and solving time for large ventilation models. 
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INTRODUCTION 

The Hardy Cross algorithm (Cross, 1936), was originally developed to solve water flow in city 
and urban pipe networks. Using principles of Kirchhoff’s electricity current laws, Hardy Cross developed 
an iterative algorithm for solving non-linear equations associated with network water flow. Traditional 
network analysis research refers to the various members of system networks as branches, nodes and 
meshes. This terminology has been changed in this paper to airways, junctions and loops respectively 
which are terms more familiar to engineers in mine ventilation. 

When Kirchhoff’s laws are applied to fluid networks, the following assumptions can be made: 
• The sum of fluid flows into a junction must equal the sum of fluid flows out of the junction.
• The sum of pressure losses around any loop through a network system must be equal to zero.

An iterative solution can therefore be achieved by initially guessing flow in a network, calculating
the pressure losses around the network loops (Figure 1), and applying flow corrections using Newton’s 
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method for each loop if the sum of the pressure losses does not equal zero. To solve the system, a loop 
must be defined for every segment or series of segments between a junction of 3 or more airways. 
 

 
 

Figure 1. A typical small network consisting of loops, airways and junctions ((McPherson & Hinsley, 
1993) 

 
The Hardy Cross algorithm has been used extensively for ventilation network analysis since the 

introduction of the first electronic computers (Tien, 1997), however numerous other variations and 
methods have since been developed through the use of matrices to solve the required system of nonlinear 
equations. Commonly used algorithms such as the Newton Raphson method (Brown, 1969), the Gradient 
method (Todini & Pilati, 1988), the Linear Theory method (Gupta & Prasad, 2000), and Coupled Network 
Solver (G. Danko, 2008) have found general use in fluid flow network solvers (Rossman, 2000). Despite 
poor and sometimes unpredictable convergence performance however, the Hardy Cross algorithm still has 
unique properties that make it attractive for ventilation models. Some benefits are: 

• Simple to program 
• Resilient to poor initial guesses 
• Computationally fast iterations 
• Rapid convergence for mostly solved networks (Demir, Yetilmezsoy, & Manav, 2008). 
• Memory efficiency 
• Amenable to parallel processing due to the independent nature of each mesh loop 

 
Causes of Poor Convergence of the Hardy Cross Algorithm 
 

An iterative process is required for solving ventilation networks because the system of equations 
for airflow is based on the non-linear Atkinson’s equation [P=RQ2]. Non-linear equations must be 
linearized using the slope derivative (nRQn-1) for the algorithms to iteratively step closer to a solution. The 
Hardy Cross method may take hundreds or thousands of iterations to achieve an acceptable level of 
accuracy for larger models. Each loop is solved independently and because airways may be shared with 
other loops, adjusting the flow in one loop to achieve a zero-pressure balance causes imbalance in adjacent 
loops. Matrix methods prevent the adjacent imbalance issue by solving the loop equations simultaneously 
but due to the non-linear equations used may still require a dozen or more iterations to achieve acceptable 
accuracy. Matrix methods are more computational and memory intensive and larger systems need to use 
more complex “sparse matrix” mathematics and matrix re-ordering to prevent the full matrix size being re-
calculated. Analysis of the potential causes of excessive iterations in Hardy Cross have suggested at least 
three potential reasons. 
 



Under-Correction 
 
The correction error can only be applied based on the linearized version of the loop equations. 

Because the system equations are non-linear, the corrections only step part-way towards a solution and will 
often under-predict the correction required, requiring more iterative steps (Figure 2). 

 
Figure 2. Convergence of Non-Linear Systems 

 
Over-Correction 

 
Over-correction occurs when a loop error is corrected by a large amount (often because of a poor 

initial guess), which greatly disrupts an adjacent loop with shared airways. The disrupted loop then also 
applies a large correction and propagates this into other loops resulting in an extended series of iterations to 
‘repair’ the disruption. In some cases, the disruption may not be recoverable as the large corrections 
continue to throw adjacent loops further out of balance. 
 
Counter-Correction 

 
An analysis of a loop in a poorly converging network found that repeated corrections were being 

undone by opposite corrections from adjacent loops. During a single iteration, the cycle of corrections 
travelled through other adjacent loops in a network until they returned to the original loop, repeating the 
correction cycle. These repeating ‘harmonic’ corrections (Figure 3) were found to be the largest contributor 
in most models with excessive iterations. While the error correction generally gets smaller each time, the 
number of iterative cycles is greatly increased. 
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Figure 3. Loop Correction Harmonic Convergence Behavior with conventional Hardy Cross 



METHODS OF IMPROVING CONVERGENCE 
 

The following methods were proposed and developed to address the causes of excessive 
iterations. The methods were then rigorously tested with large numbers of randomized networks to test 
effectiveness. 
 
Applying a Convergence Factor 
 

Under-correction caused by equation linearization and the resultant ‘stepped’ error correction 
towards a solution can be improved by using a factor that increases the correction amount that would 
normally be applied to a loop by the Newton Method. Too much correction however risks divergence from 
the solution, increasing iterations and eventually may not be recoverable. 
 
Limiting Correction Size 
 

Large corrections to loops with poor initial guesses can be limited to prevent over correction 
effects to adjacent loops. This will minimize the effect of the correction on adjacent loops and allow the 
network to more gradually move towards the required solution. Restricting the over correction too much 
however risks additional iterations being unnecessarily required to reach a solution. 
 
Reducing Repetitive (Harmonic) Corrections  
 

The oscillating convergence behavior (Figure 3) of error corrections with adjacent loops 
resembles an oscillating mechanical system (Trigg, Rothman, Benedek, & Phillpot, 1994). To cancel the 
effect of harmonic oscillations in mechanical systems, either the applied force (in this case the loop 
corrections) or the natural frequency of the structure (in this case the network) needs to change. The order 
in which mesh corrections are applied dictates the direction of harmonic oscillation in a network should 
they occur. If every loop (mesh) correction is applied in a different order for each iteration, the flow of 
corrections into adjacent loops is changed and prevents the system falling into lengthy harmonic correction 
cycles, resulting in a solution in far fewer iterations (Figure 4). The method presented has been labelled by 
the author as Iterative Random Mesh Ordering (IRMO). 
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Figure 4. Loop Correction Behavior with IRMO Hardy Cross solving 
 

TESTING OF METHODS 
 

A method of creating randomized ventilation networks was proposed by Kim’s dissertation “An 
empirical study of mine ventilation network analysis methods” (Kim, 1990), where the Hardy Cross 
algorithm was tested against several non-linear matrix solving methods. Kim’s study concluded that 
despite the matrix methods requiring less iterations, the Hardy Cross solution (for ventilation networks) 
couple with least resistance loops remained a computationally fast method for solving ventilation networks 
although this was only applied to networks of up to 200 airways in size with a single fan. Sarac and 



Sensogut (2000) reported similar results when comparing Hardy Cross to non-linear methods, but noted 
that the Hardy Cross solution slows considerably when approaching an acceptable error level.  

 
Contemporary mine ventilation networks however have many fans and are typically up to 5000 

airways or more in size (Chasm Consulting, 2015), with some models observed to exceed 50,000 branches. 
To test the performance of much larger networks with the Hardy Cross algorithm, Kim’s software code 
was slightly modified to produce larger models with more fans. The effect on mesh selection was also 
evaluated by using both minimum sum resistance loops (which produced smaller number of airways in 
each loop), and a minimum resistance spanning tree method (which produced larger numbers of airways 
per loop). 
 
Testing Methodology 
 

One hundred (100) random models were generated for each size of network. The network size for 
each group of models was varied from 200 to 5,000 branches in size and tested against the various 
proposed methods, noting solving time and iterations required. Kim’s randomized models were found to be 
typically more complex and variable and of a higher density (more junctions and less airways) than 
equivalent real mine examples. For example, a randomized network of 1000 airways was typically 
equivalent in complexity and solving time to a real mine network of several thousand airways. All models 
were converged to a high accuracy of 0.001 m3/s and results were averaged with the upper and lower 5% 
of result outliers excluded to remove excessive bias of a minority of networks from the results. 
 

RESULTS 
 

Kim’s study demonstrated that the Hardy Cross algorithm requires increased convergence 
iterations with network size. Repeating the testing procedure with the increased model sizes from Kim’s 
modified code confirmed the continuation of this trend, with the Hardy Cross routine showing exponential 
growth in iterations to network size. The matrix methods only showed a slight increase in iterations, 
however the solving time exponentially increased demonstrating no overall benefit to the Hardy Cross 
method using Kim’s code. While Kim’s matrix methods (which used dense matrix solving) could have 
been improved using sparse matrices, this study focused on improving only the Hardy Cross. 
 
Iterative Randomized Mesh Ordering 
 

Applying the IRMO method together with using a spanning tree loop selection method results in 
both a significant improvement in convergence iterations and demonstrates a trend that no longer increases 
iterations proportionally with size. Figures 5 and 6 below show iteration convergence and computational 
time performance to achieve mesh corrections of less than 0.001 m3/s, clearly demonstrating the 
superiority of using the IRMO method with spanning tree resistance loops, compared to conventional 
Hardy Cross with both minimum resistance and spanning loops. 

 
The IRMO method combined with the spanning tree loops reduced iterations for large (5000 

airway) randomized models from an average of 15,000 iterations to only 350, and in further testing only 
increased to only 500 iterations with network sizes of 15,000 branches. Networks of 500,000 airways in 
size were successfully tested with less than 1000 iterations. It was noted the IRMO method however 
showed no improvement when coupled with the minimum resistance loops. It is surmised this may be due 
to decreased shared airways and loop interaction in the minimum resistance loop method compared to the 
high number of shared airways and loop interactions in the minimum resistance spanning tree method.
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Figure 5. Convergence Iterations vs Network Size  
(up to 5000 branches, 0.001 m3/s error) 
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Figure 6. Convergence Iterations vs Network Size 
IRMO SPAN method only

 
Computational Speed 

 
Computational speed is a function of the number of loops required, the number of airways 

included in the loops, and the number of iterations required to converge to a solution. Unlike conventional 
Hardy Cross where the linear growth in iterations and the growth in the number of airways combine to 
produce an exponential increase in solving time, the IRMO method appears to plateau convergence 
iterations and therefore computational speed reverts to a near linear increase proportional with the number 
of airways. Figures 7 and 8 demonstrate the improved behaviors of convergence in large models (up to 
5000 branches, 0.001m3/s accuracy, IRMO spanning tree loop method only). 
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Figure 7. Computational Speed vs Network Size  Figure 8. Computational Speed vs Network Size  
 
Loop Correction Limiting 
 

Correction adjustments to loops per iteration were limited to a range of values from 0.5m3/s to 100 
m3/s. Multiple (50) randomized networks of 1000 airways were selected to form the test subjects and all 
tests were done with only the optimized IRMO and minimum resistance spanning tree method. 

 
The hypothesis of this method suggests small limits risk long convergence times when a loop 

starts with a poor initial estimate whereas large or no limits may cause a ripple of large corrections to travel 
through a series of adjacent network loops and more iterations will be required to recover the solution. The 
results in Figure 9 showed only modest positive benefits in limiting correction size down to around 2m3/s, 
however the benefits faded below this and rapidly increased iteration numbers.  

 



 
 

Figure 9. Correction Limiting (1000 Airways) 
 
Correction Factors 
 

Correction factors ranging from 0.8 (under-correction) to 1.8 (over-correction) were tested for 
iteration improvements. For example, the Newton method suggests that a correction of +10 m3/s needs to 
be applied to each airway in a loop to approximate a zero-pressure balance, then a correction factor of 1.5x 
would apply 15m3/s instead. The hypothesis is that correction factors of more than one (1) applied to loop 
corrections to each airway may allow iterations to step towards a solution faster due to skipping some 
subsequent intermediate correction steps. A factor that is too high may risk excessive stepping creating a 
diverging result with no solution.  

 
It was found that factors up to 1.6 resulted in a 25% improvement in convergence speed. Factors 

or 2.0 or more occasionally did not resolve to a solution, and therefore the maximum factor used in the 
study was limited to 1.8. Figure 10 shows up to a 38% improvement in iteration performance compared to 
no adjustment to the corrections. 

 

 
 

Figure 10. Correction Factor Effect (1000 Airways) 
 



RESULT SUMMARY 
 

Table 1 summarizes the results of the improvement strategies, with the application of the IRMO 
method producing the best net gain in performance improvements of the Hardy Cross algorithm. 

 
Table 1. Results of Improvement Strategies 

METHOD POTENTIAL 
IMPROVEMENT 

COMMENT 

IRMO 100–1000%+ Higher improvement with increase model size 
CORRECTION FACTOR 38% Factor of 1.4 – 1.6 Considered Optimum 

CORRECTION LIMIT 10% Correction limit of 2m3/s gives best result 
 

REAL WORLD PERFORMANCE 
 

The IRMO method shows the most promise for performance increases on the randomized model 
testing, however limited ‘real world’ model performance testing suggests the improvement may not be as 
significant in many cases. The IRMO method improvements depend on the likelihood of a model falling 
into an error correction cycle which occurs when large numbers of shared airways are members of multiple 
loops resulting from a very dense models with many interconnected junctions. Real world models are 
generally found to be much more ordered and regular in construction than the randomized models used in 
this study. They also tend to be very ‘sparse’ in construction, with relatively few junctions compared to 
airways, and most junctions only have a maximum of three or four airway connections. 
 

Unfortunately, there is no practical statistically correct way to compare the performance across 
hundreds of real-world models. Real world models are usually the intellectual properties of the companies 
that produce them. Comparing results to a selection of twelve (12) available real world mine ventilation 
models, randomly generated networks of a similar size took many more iterations to solve. The selection of 
real world’ models investigated ranged from 150 to nearly 10000 airways with most described as ‘very 
sparse’, having relatively few loops compared to the number of airways. Of the 12 real world models, 9 
showed good improvements of greater than 30% reduction in iterations, while 3 of these showing 
extremely good improvements of 90% less iterations. Three models converged quickly anyway and 
showed no improvement (and no worsening) with IRMO. Applying limiting and over converging factor 
methods showed minor improvement in nearly all cases. Due to the limited real-world sample size, no 
statistical information on the proportion of improvement is presented. On average, real-world ventilation 
model performance is unlikely to achieve improvements shown in the random model trials however 
significant gains will still be made in some cases, and other types of networks (such as water or power 
distribution) may be more effective. 
 

CONCLUSIONS 
 

Iterative random mesh ordering (IRMO) coupled with mesh selection derived using a minimum 
resistance spanning tree method, produces greatly improved average convergence times and computational 
speed over the traditional Hardy Cross algorithm in larger randomized networks. Further improvements 
can be gained by increasing loop corrections by a factor of up to 1.5× or more and by limiting correction 
magnitudes by between 2 and 10 m3/s. Randomized networks generated by Kim’s method however are 
significantly more complex than real world ventilation models and do not accurately represent typical mine 
networks. Limited real-world model testing shows less improvement in performance, but as demonstrated 
in limited real world testing, a majority of cases are likely show significant improvement. 

 
The strengths of the Hardy Cross algorithm such as simplicity, tolerance for poor initial starting 

estimates and computational memory efficiency are retained, while a weakness such as convergence 
performance for large networks was reduced with the proposed methods. Transient simulation methods 
such as fire simulation which require multiple iterations of steady state simulation will also benefit in 
delivering faster results.  



While no direct comparison was done with modern matrix solving algorithms such as the Newton 
Raphson Matric method, or the Modified Gradient Method, the improved methods demonstrate the 
traditional Hardy Cross method can potentially compete for performance in larger networks. Even if not 
superior in performance to modern matrix algorithms, the improved Hardy Cross method may still find 
opportunities where simple programming is desired, in applications or networks where matrix pre-
conditioning is difficult or as a pre-conditioner for matrix methods that require better starting estimations.  
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